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1 Model overview

Our model introduces social interactions into a previous non-social model 1. We consider a clonal, well-mixed,

female population of large and constant size, where the environment is constant, generations are overlapping,

individual’s age is measured in continuous time, and the population size is regulated via density-dependent

competition through fecundity (common demographic assumptions in life history models 2). We partition the

body of each individual into brain tissue, reproductive tissue, and the rest, which we call somatic tissue. Alter-

native partitions of body mass are possible, for example to study trade-offs of digestive 3 or adipose 4 tissues

with brain tissue, but here we consider this minimal partition as a simpler starting point (Supplementary In-

formation section 9). At each time, each individual has genetic control of the fraction of growth metabolic rate

allocated to each tissue, which reflects the amount of energy that is allocated to the production of each tissue.

We call the allocation profile throughout life the growth strategy, which is the evolving trait in the model. We

assume that some of the energetic consumption of the brain is due to skill production and maintenance, and

we consider skills that allow the individual to overcome challenges of energy extraction of four types: ecologi-

cal (me vs nature), cooperative (us vs nature), between-individual competitive (me vs you), or between-group

competitive (us vs them) challenges. If the individual fails to overcome the challenge, the individual can extract

energy from an environment facilitated by her mother if the individual is young enough. Natural selection can

then mould how much an individual grows her brain given brain metabolic costs and that brain supports skills

that allow the individual to obtain energy by overcoming the different types of energy extraction challenges.

To study the evolution of the growth strategy, we perform a standard invasion analysis. Specifically, we seek

a growth strategy that constitutes a monomorphic evolutionary equilibrium (which is the relevant case for

brain size as we consider only females so sex dimorphism is not a concern), called an uninvadable strategy 5.

Hence, we assume that almost all individuals in the population have a resident growth strategy v and we assess

whether or not the growth strategy u of rare mutant individuals can invade (increase in frequency in) the

resident population. We thus seek an uninvadable growth strategy u∗ so that, when it is a resident, it resists

invasion by any mutant strategy taken from the set U of feasible growth strategies. From these assumptions

and those stated in the previous paragraph, an uninvadable strategy u∗ satisfies 6

u∗ ∈ argmax
u∈U

R0(u,u∗) (1)

where

R0(u, v) =
∫ T

0
`(t )m(t )dt (2)

is the expected lifetime number of offspring of the mutant strategy u given that residents have strategy v .

Here, T is an age after which the individual no longer reproduces or is dead, `(t ) is the probability that a

mutant survives from birth to age t (survival), and m(t ) is a mutant’s rate of offspring production at age t

with density dependence (effective fecundity). Hence, Eq. (1) implies that an uninvadable strategy u∗ is a best

response to itself in the sense that no other rare strategy has a higher expected lifetime number of offspring

than u∗ when u∗ is resident. Thus, below we search for an uninvadable strategy by identifying a strategy that

is a best response to itself (similar to a Nash equilibrium, but different because here only the mutant’s payoff

is maximized whereas in a Nash equilibrium the payoffs of both players are maximized).



Finding a u∗ satisfying Eq. (1) poses an “evolutionary differential game” problem fully specified in section

3 below. To solve it, we proceed like this: given a resident, we find a best response to the resident by solving

an optimal control problem; then, we set this best response as the new resident and iterate until we achieve a

situation where the resident and its best response are indistinguishable to a chosen extent. To facilitate such

convergence, we constrain the best response to be similar to a certain degree to the resident; this technique is

known as damping 7 and is an assumption of weak selection (specifically, of phenotypic or δ-weak selection 8).

As a first approximation, we assume that the mortality rate µ is independent of age and of the evolving

traits (this assumption can be relaxed in future extensions of the model; section 9). Consequently, survival

reduces to `(t ) = exp(−µt ). Also, we equate reproductive tissue with preovulatory ovarian follicles for three

reasons: (i) so that reproductive tissue is not involved in offspring maintenance, (ii) so that the metabolic costs

of reproductive tissue are representative of the metabolic costs of the germline, and (iii) so that reproductive

tissue directly relates to fecundity (the latter two reasons are explained in paragraph Br in section 4.3). Since

reproductive tissue thus defined is not involved in offspring maintenance, we can write effective fecundity at

age t as being proportional to the mass xr(t ) of reproductive tissue at that age 1: that is, m(t ) ≈ C (v) f0xr(t ),

where C (v) is a positive value that depends on the resident strategy and regulates population size, and f0 is

a proportionality constant that measures the number of offspring produced per unit time per mass unit of

reproductive tissue in the absence of density dependence.

Hence, an uninvadable growth strategy u∗ generates an “optimal” mass x∗
i (t ) of tissue i at every age t (for

i ∈ {b,r,s} denoting brain, reproductive, and somatic tissue, respectively) and an “optimal” skill level x∗
k (t ) at

every age. These values are optimal in the sense that they result from a growth strategy that is a best response

to itself. Additionally, an uninvadable growth strategy u∗ generates the timing of the life history. In particular,

with the parameter values used, the resulting uninvadable growth strategy typically produces a life history

with four critical ages where the growth strategy changes suddenly (called switching times in optimal control

terminology): the age of brain growth onset tb0, which is when allocation to brain growth starts; the age of brain

growth arrest tb, when allocation to brain growth stops; the age at maturity tm, when allocation to growth of

reproductive tissue starts; and the age at adulthood ta, when allocation to growth of non-reproductive tissues

stops. These four ages are an output, not parameters, of the model.

2 Expressions for energy extraction efficiency

In the model, each individual extracts energy depending on her own skills and on the skills of her social part-

ners. Specifically, we assume that at each age the individual faces an energy extraction challenge that can be of

one of four types and if the individual fails at the challenge, then she can extract energy from an environment

facilitated by the mother if the individual is young enough. The four challenge types are: (1) ecological, where

the individual acts alone against a constant environment (me vs nature); (2) cooperative, where the individual

acts in concert with a cooperating partner of the same age against the constant environment (us vs nature);

(3) between-individual competitive, where the individual acts alone against a competitor of the same age (me

vs you); and (4) between-group competitive, where the individual acts with a cooperating partner against two

cooperating competitors, all of the same age (us vs them). We index these challenge types, respectively by



j ∈C= {1,2,3,4}. As explained below, we let P j be the proportion of energy-extraction challenges of type j ∈C
that the individual faces during any vanishingly small time interval [t , t +∆t ], so that

∑
j∈CP j = 1. We assume

that P j is constant with respect to time for all j ∈C. We allow the contribution of cooperating partners to be

either additive, multiplicative, or submultiplicative (i.e., the geometric average of their skill level).

2.1 Derivation of energy extraction efficiency with maternal provisioning

In this section, we derive an expression for e(t ) that implements our consideration of various challenge types

and our assumption that if the individual fails to overcome a challenge, then she can extract energy from an

environment facilitated by her mother if the individual is young enough.

Let E(t ) be the rate of energy extraction at age t of the focal mutant individual and let Emax(t ) be an in-

dividual’s rate of energy extraction at age t if she is maximally successful at energy extraction (in this section,

arguments highlight time dependence, although variables may have other dependencies). We define e(t ), the

energy extraction efficiency (EEE) of the focal mutant individual at age t , as e(t ) = E(t )/Emax(t ). Let E j (t ) be

the rate of energy extraction at age t of the focal mutant when she faces a challenge of type j ∈C. We then

define the energy extraction efficiency when facing a type- j challenge as e j (t ) = E j (t )/Emax(t ).

From these definitions, we have that the amount of energy that the mutant extracts during a time interval

[t , t+∆t ] is approximately E(t )∆t , where the approximation is good when E(t ) varies little over the time interval

and becomes exact as ∆t tends to zero. Similarly, the amount of energy that the mutant extracts during a

time interval [t , t +∆t ] given that it is facing a type- j challenge is approximately E j (t )∆t . We assume that the

individual faces an energy extraction challenge at every time and let the proportion of challenges of type j

during the time interval [t , t +∆t ] be P j (t ,∆t ), which in general depends on t and ∆t . Hence, the amount

of energy that the mutant extracts during the time interval [t , t +∆t ] is approximately
∑

j∈CP j (t ,∆t )E j (t )∆t .

That is,

E(t )∆t ≈ ∑
j∈C

P j (t ,∆t )E j (t )∆t , (3)

where the approximation becomes exact when ∆t approaches zero. Hence, dividing Eq. 3 by Emax(t )∆t and

taking the limit ∆t → 0, we obtain

e(t ) = ∑
j∈C

P j (t )e j (t ), (4)

where P j (t ) is no longer dependent on ∆t , provided the limit converges. For simplicity, we assume that the

proportions P j (t ) are constant with respect to t for all t ∈ [0,T ]. In practice, the meaning of P j can be seen as

follows. Provided that the unit of t is years, that ∆t is comparatively smaller than this unit (say, one week), and

that the rates of energy extraction E(t ) and E j (t ) are fairly constant during weekly time intervals, then P j (t ) are

the proportions of type- j challenges faced during a week starting at age t ; our assumption of constant P j (t )

with respect to t then means that the proportion of type- j challenges faced during any week is approximately

the same throughout (reproductive) life. This assumption of constant P j can be relaxed in future extensions

of the model (section 9).

We now seek expressions for the energy extraction efficiency at age t when facing type- j challenges, e j (t ).

Suppose that when the individual faces only energy extraction challenges of type j during a time interval [t , t+
∆t ], the individual succeeds at these challenges during a proportion S j (t ,∆t ) of the time interval. When she



succeeds, the individual extracts energy at a rate Emax(t ), but when she fails at energy extraction, she extracts

energy at a rateΦ(t ) from maternal provisioning, which decreases with age t . Hence, we have

E j (t )∆t ≈ S j (t ,∆t )Emax(t )∆t + [1−S j (t ,∆t )]Φ(t )∆t , (5)

where the approximation becomes exact when ∆t approaches zero. Dividing Eq. (5) by Emax(t )∆t and taking

the limit ∆t → 0, we obtain

e j (t ) = S j (t )+ [1−S j (t )]ϕ(t ), (6)

whereϕ(t ) =Φ(t )/Emax(t ) is the energy extraction efficiency from maternal provisioning and S j (t ) is no longer

dependent on ∆t , again provided the limit converges.

We do not assume that S j (t ) is constant with respect to time. Instead, we let the success proportion at

energy extraction challenges of type j take the form of a contest success function 9,10:

S j (t ) = c j (t )

c j (t )+d j (t )
, (7)

where c j (t ) measures the individual’s “competence” at energy extraction in a type- j challenge at age t , and

d j (t ) measures the “difficulty” of a type- j challenge at that age. Using Eqs. (6) and (7) in (4) yields the individ-

ual’s energy extraction efficiency

e(t ) = ∑
j∈C

P j

[
c j (t )

c j (t )+d j (t )
+ d j (t )

c j (t )+d j (t )
ϕ(t )

]
. (8)

Setting P1 = 1 yields the EEE in the purely ecological setting:

e(t ) = c1(t )+d1(t )ϕ

c1(t )+d1(t )
. (9)

Eq. (9) has a different form from that used in the non-social model we build upon 1 (i.e., compared to their

Eq. 32, where e = c/[c +α(1−ϕ)]), which did not have a derivation for incorporating maternal provisioning

(ϕ). This difference still allows for comparison with that work as our improved expression [Eq. (9)] yields the

same predictions with the same benchmark parameter values after adjusting the parameter value controlling

maternal provisioning at birth (Extended Data Fig. 2g).

2.2 Equations for competence, challenge difficulty, and maternal provisioning

In this section, we define the expressions for the energy extraction efficiency e j when facing a challenge of

type j (in this section, arguments highlight skill dependencies rather than time dependencies). We assume

that some of the brain metabolic rate is due to production and maintenance of domain-general skills that can

be used to overcome the four types of challenges. Let xk(t ) and yk(t ) be, respectively, the domain-general skill

level of a mutant and a resident of age t . An individual’s competence at a challenge depends on whether she

engages in the challenge alone or with a cooperating partner. So, we let the mutant’s competence at chal-

lenge of type j be c j = c j (G j (xk, yk)), where G j (xk, yk) is a production function describing how the skills of the

cooperating partners interact (e.g., in an additive, multiplicative, or submultiplicative way).

Using our assumption of domain-general skills, we let the competence function be independent of the

challenge type, c j (G j (xk, yk)) = c(G j (xk, yk)), although its argument depends on the challenge type. We con-



sider two forms for the competence function:

c(G j (xk, yk)) =


Gγ

j (xk, yk) with power competence

exp[G j (xk, yk)]γ with exponential competence,
(10a)

where γ measures the effectiveness (decidability) of skills at the challenge. The production function G j (xk, yk)

is

G j (xk, yk) =



xk for j ∈ {1,3}

xk + yk for j ∈ {2,4} with additive cooperation

xk yk for j ∈ {2,4} with multiplicative cooperation

p
xk yk for j ∈ {2,4} with sub-multiplicative cooperation .

(10b)

The difficulty d j of a challenge depends on the challenge type. For an ecological or a cooperative challenge,

the challenge difficulty is α which depends on the “ecological” environment, which we assume constant (this

assumption can be relaxed in future extensions; see section 9). In turn, the difficulty of a competitive challenge

depends on the skill of the individual’s competitors. Since the mutant is rare, a mutant’s competitors are res-

idents, so the difficulty of a competitive challenge is the competence of the resident, c(G j (yk, yk)). In general,

the difficulty of a type- j challenge is

d j (yk) =


α for j ∈ {1,2}

c(G j (yk, yk)) for j ∈ {3,4}.
(10c)

In turn, we let the energy extraction efficiency from maternal provisioning when the individual is of age t be

ϕ(t ) =ϕ0 exp(−ϕrt ), (10d)

where ϕ0 is the energy extraction efficiency from maternal provisioning at birth and ϕr measures the rate of

decrease of maternal provisioning.

2.3 Energy extraction efficiency given each challenge type

In this section, we write explicitly the expressions for the energy extraction efficiency given a challenge, e j .

Since we consider two forms for the competence function (power or exponential) and three forms for coop-

eration (additive, multiplicative, or submultiplicative), we have six cases for the energy extraction efficiency.

Using Eqs. (8), (6), and (10), we obtain the following expressions for e j .



2.3.1 Power competence with additive cooperation (PC-AC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) =
xγk (t )+αϕ0 exp(−ϕrt )

xγk (t )+α (11a)

e2(t , xk, yk) = [xk(t )+ yk(t )]γ+αϕ0 exp(−ϕrt )

[xk(t )+ yk(t )]γ+α (11b)

e3(t , xk, yk) =
xγk (t )+ yγk (t )ϕ0 exp(−ϕrt )

xγk (t )+ yγk (t )
(11c)

e4(t , xk, yk) = [xk(t )+ yk(t )]γ+ [yk(t )+ yk(t )]γϕ0 exp(−ϕrt )

[xk(t )+ yk(t )]γ+ [yk(t )+ yk(t )]γ
. (11d)

2.3.2 Power competence with multiplicative cooperation (PC-MC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) =
xγk (t )+αϕ0 exp(−ϕrt )

xγk (t )+α (12a)

e2(t , xk, yk) = [xk(t )yk(t )]γ+αϕ0 exp(−ϕrt )

[xk(t )yk(t )]γ+α (12b)

e3(t , xk, yk) =
xγk (t )+ yγk (t )ϕ0 exp(−ϕrt )

xγk (t )+ yγk (t )
(12c)

e4(t , xk, yk) = [xk(t )yk(t )]γ+ [yk(t )yk(t )]γϕ0 exp(−ϕrt )

[xk(t )yk(t )]γ+ [yk(t )yk(t )]γ

=
xγk (t )+ yγk (t )ϕ0 exp(−ϕrt )

xγk (t )+ yγk (t )

= e3(t , xk, yk). (12d)

2.3.3 Power competence with sub-multiplicative cooperation (PC-SC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) =
xγk (t )+αϕ0 exp(−ϕrt )

xγk (t )+α (13a)

e2(t , xk, yk) = [xk(t )yk(t )]γ/2 +αϕ0 exp(−ϕrt )

[xk(t )yk(t )]γ/2 +α (13b)

e3(t , xk, yk) =
xγk (t )+ yγk (t )ϕ0 exp(−ϕrt )

xγk (t )+ yγk (t )
(13c)

e4(t , xk, yk) = [xk(t )yk(t )]γ/2 + [yk(t )yk(t )]γ/2ϕ0 exp(−ϕrt )

[xk(t )yk(t )]γ/2 + [yk(t )yk(t )]γ/2

=
xγ/2

k (t )+ yγ/2
k (t )ϕ0 exp(−ϕrt )

xγ/2
k (t )+ yγ/2

k (t )
. (13d)



2.3.4 Exponential competence with additive cooperation (EC-AC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) = exp[γxk(t )]+αϕ0 exp(−ϕrt )

exp[γxk(t )]+α (14a)

e2(t , xk, yk) = exp{γ[xk(t )+ yk(t )]}+αϕ0 exp(−ϕrt )

exp{γ[xk(t )+ yk(t )]}+α (14b)

e3(t , xk, yk) = exp[γxk(t )]+exp[γyk(t )]ϕ0 exp(−ϕrt )

exp[γxk(t )]+exp[γyk(t )]
(14c)

e4(t , xk, yk) = exp{γ[xk(t )+ yk(t )]}+exp{γ[yk(t )+ yk(t )]}ϕ0 exp(−ϕrt )

exp{γ[xk(t )+ yk(t )]}+exp{γ[yk(t )+ yk(t )]}

= exp[γxk(t )]+exp[γyk(t )]ϕ0 exp(−ϕrt )

exp[γxk(t )]+exp[γyk(t )]

= e3(t , xk, yk). (14d)

2.3.5 Exponential competence with multiplicative cooperation (EC-MC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) = exp[γxk(t )]+αϕ0 exp(−ϕrt )

exp[γxk(t )]+α (15a)

e2(t , xk, yk) = exp{γ[xk(t )yk(t )]}+αϕ0 exp(−ϕrt )

α+exp{γ[xk(t )yk(t )]}
(15b)

e3(t , xk, yk) = exp[γxk(t )]+exp[γyk(t )]ϕ0 exp(−ϕrt )

exp[γxk(t )]+exp[γyk(t )]
(15c)

e4(t , xk, yk) = exp{γ[xk(t )yk(t )]}+exp{γ[yk(t )yk(t )]}ϕ0 exp(−ϕrt )

exp{γ[xk(t )yk(t )]}+exp{γ[yk(t )yk(t )]}
. (15d)

2.3.6 Exponential competence with sub-multiplicative cooperation (EC-SC)

For this case, the energy extraction efficiency for each challenge type is

e1(t , xk) = exp[γxk(t )]+αϕ0 exp(−ϕrt )

exp[γxk(t )]+α (16a)

e2(t , xk, yk) = exp{γ[xk(t )yk(t )]1/2}+αϕ0 exp(−ϕrt )

α+exp{γ[xk(t )yk(t )]1/2}
(16b)

e3(t , xk, yk) = exp[γxk(t )]+exp[γyk(t )]ϕ0 exp(−ϕrt )

exp[γxk(t )]+exp[γyk(t )]
(16c)

e4(t , xk, yk) = exp{γ[xk(t )yk(t )]1/2}+exp{γ[yk(t )yk(t )]1/2}ϕ0 exp(−ϕrt )

exp{γ[xk(t )yk(t )]1/2}+exp{γ[yk(t )yk(t )]1/2}
. (16d)



3 Evolutionary differential game

Here we state the evolutionary differential game problem 11 posed by Eq. (1), which we solve to obtain an

uninvadable growth strategy. The problem is a “game” between mutant and resident because the mutant’s

payoff [R0(u, v)] depends on the resident strategy, it is “differential” because the problem depends on differ-

ential equations, and “evolutionary” rather than a typical differential game because only the mutant strategy

is subject to maximization so that an evolutionary equilibrium is attained when given a resident the “best mu-

tants” coincide with the resident. As stated above, we find such strategy by iterating optimal control problems

until convergence to a strategy that is a best response to itself. The definition of quantities is summarized in

Supplementary Table. 1.

3.1 Optimal control problem (OCP) to iterate

From our assumptions above and in previous work 1, the expected lifetime number of offspring of a mutant

u = {u(t )}T
t=0 in the context of resident v = {v(t )}T

t=0 is

R0(u, v) =C (v)J (u, v), (17)

for some density-dependent scalar C (v) > 0 and objective functional J (u, v). In the terminology of optimal

control theory, we seek a mutant’s control (growth strategy)

u(t ) = (ub(t ),ur(t ),us(t )) for all t ∈ [0,T ), (18a)

given the resident’s control

v(t ) = (vb(t ), vr(t ), vs(t )) for all t ∈ [0,T ), (18b)

so as to maximize the mutant’s objective functional

J (u, v) = f0

∫ T

0
exp(−µt )xr(t )dt , (18c)

subject to the control constraint

u(t ) ∈ [0,1]3 where ub(t )+ur(t )+us(t ) = 1, for all t ∈ [0,T ), (18d)

such that the mutant’s state variable

x(t ) = (xb(t ), xr(t ), xs(t ), xk(t )) ≥ 0, for all t ∈ [0,T ) (18e)

given the resident’s state variable

y(t ) = (yb(t ), yr(t ), ys(t ), yk(t )) ≥ 0, for all t ∈ [0,T ) (18f)

satisfies the dynamic constraints

ẋ = g(t ,u,x, yk) (18g)

with

gi (t ,u,x, yk) = ai ui Bsyn(t ,x, yk) for i ∈ {b,r,s} (18h)

gk(t ,u,x, yk) = b1
[
xbBb +ubBsyn(t ,x, yk)

]−b2xk, (18i)



where ai = 1/Ei , b1 = sk/Ek, and b2 = Bk/Ek. The growth metabolic rate is

Bsyn(t ,x, yk) = K e(t , xk, yk)xβB −Bbxb −Brxr −Bsxs, (18j)

where the mutant’s body mass is

xB = xb +xr +xs, (18k)

and the mutant’s expected energy extraction efficiency at age t is

e(t , xk, yk) = ∑
j∈C

P j e j (t , xk, yk), (18l)

where C = {1,2,3,4} and
∑

j∈CP j = 1 for all t ∈ [0,T ). The energy extraction efficiency e j for each type of

challenge and all cases considered are given by Eqs. (11)-(16). Finally, the initial conditions of (18g) are

xi (0) = xi 0 for all i ∈ {b,r,s,k} (18m)

and we do not consider any terminal conditions for (18g). Since v(t ) and y(t ) are given for all t ∈ [0,T ), they

constitute dynamic parameters (i.e., they are given quantities that vary with t ).

3.2 Iteration of OCP to obtain uninvadable strategy

As explained above, to facilitate convergence to a strategy that is a best response to itself, we impose the addi-

tional path constraint that an optimal control ũ∗ solving problem (18) must also satisfy |ũ∗(t )−v(t )| < δ for all

t ∈ [0,T ) and for some δ> 0; this constraint is known as damping 7 and is an assumption of δ-weak selection 8.

Once a solution (ũ∗, x̃∗) for the optimal control problem (18) is found, this solution (ũ∗, x̃∗) is set as the resi-

dent (v,y) and the problem is solved again. Ideally, this procedure is iterated until the optimal control ũ∗ of the

current iteration satisfies |ũ∗(t )−v(t )| < ε for all t ∈ [0,T ) and for some ε such that δ> ε> 0 so that such ũ∗ = u∗

is a best response to itself to ε degree. However, in numerical solutions, controls sustain numerical jitter that

prevents the application of this ε criterion, so convergence is declared by visual comparison of ũ∗ and v (for

an illustration, see Extended Data Fig. 2a,f). Note that the tilde in (ũ∗, x̃∗) denotes the optimal control and

associated optimal state for a given iteration, while (u∗,x∗) denotes the best response to itself solving problem

(1) to ε degree.



Control variables

ui (t )
Mutant’s fraction of growth metabolic rate allocated to tissue i at age t with i ∈ {b,r,s}

(for brain, reproductive, and somatic tissue, respectively)

State variables

xi (t ) Mutant’s mass of of tissue i at age t with i ∈ {b,r,s} or skill level at age t with i ∈ {k}

Switching times

tl Ages† of brain growth onset, brain growth arrest, maturity, and adulthood with l ∈ {b0,b,m,a}

Dynamic parameters

vi (t ) Resident’s fraction of growth metabolic rate allocated to tissue i at age t with i ∈ {b,r,s}

yk(t ) Resident’s skill level at age t

Parameters

xi 0 Mass of tissue i at birth with i ∈ {b,r,s} or skill level at birth with i ∈ {k}

Bi

Rate of heat release by an average mass unit of tissue i of the resting individual due to tissue

maintenance with i ∈ {b,r,s} (i.e., each tissue’s mass-specific maintenance metabolic rate);

or rate of heat release by the resting individual’s brain for maintenance of an average skill unit

with i ∈ {k} (i.e., skill-specific memory metabolic rate)

Ei

Rate of heat release by the resting individual due to the production of an average mass unit of

tissue i with i ∈ {b,r,s} (i.e., each tissue’s mass-specific growth metabolic rate);

or rate of heat release by the resting individual’s brain for production of an average skill unit

with i ∈ {k} (i.e., skill-specific learning metabolic rate)

K Resting metabolic rate with a body mass of one unit and full energy extraction efficiency

β
Coefficient scaling resting metabolic rate with body mass under full energy extraction

efficiency

µ Mortality rate for individuals of age t

T Age of death or of reproductive cessation

sk Fraction of the resting individual’s brain metabolic rate allocated to energy extraction skills

α Difficulty of environmental (non-social) challenges

γ Effectiveness (decidability) of skills at overcoming challenges

ϕ0 Energy extraction efficiency of the newborn from maternal provisioning

ϕr Rate at which maternal provisioning decreases as the individual grows

P j
Proportion of energy-extraction challenges of type j faced during any [t , t +∆t ] with j ∈ {1,2,3,4}

and
∑

j P j = 1 as ∆t tends to zero

f0
Number of offspring produced per unit time and per mass unit of reproductive tissue without

density dependence

Supplementary Table 1: Summary of definitions. †The switching times are an output of the model.



4 Parameter values

Here we summarize the parameter values used. We classify parameters into P (4 of them), Q (13 of them), and R

(9 of them) parameters. P-parameters control challenge proportion and we exhaustively explore their values to

study their effects. In section 4.1, we give the values for the Q-parameters used, which measure newborn mass,

tissue metabolism, and demography and were previously 1 estimated for human females using published data;

in particular, Q-parameters include estimates for brain metabolic costs. In section 4.2, we list the values of the

R-parameters used, which measure skill metabolism, energy extraction, maternal provisioning, and mutation

effect and we use reasonable values given the available data; in particular, R-parameters include the metabolic

cost of memory, whose values fall within a previously empirically estimated range for stored motor patterns

in cerebellum Purkinje cells in rats. In section 4.3 we discuss the estimates of a subset of the Q-parameters,

specifically the metabolic maintanence costs, Bi . In Extended Data Fig. 3g,h we show that the values used for

the R-parameters yield a high ontogenetic fit with H. sapiens while generating adult body and brain sizes of

ancient human scale in the purely ecological scenario 1. The values used for R involve intermediate difficulty

of environmental challenges, moderately effective skills, and metabolically expensive memory (although in

the low end of the empirically estimated range). The values used here for Q and R are the same as those used

previously 1, except for ϕ0, which is adjusted given our improved implementation of maternal provisioning.

Since the parameter f0 only displaces the objective J vertically and thus has no effect on the solution,

we choose its value to scale the objective and facilitate numerical solutions (Supplementary Table 2). The

R-parameter values are different between the cases of power (Supplementary Table 3) and exponential com-

petence (Supplementary Table 4). For power competence, the units of α are different when cooperation is

multiplicative when compared to the other cases; in contrast, for exponential competence, the units of γ are

different if cooperation is multiplicative (keeping track of units is important to properly rescale state variables

for numerical solutions; see section 5).

4.1 Q-parameter values

The values for Q-parameters are listed in Supplementary Table 2.

Newborn mass Tissue metabolism Demography

K 132.7281 MJ
y kg−β β 0.7378

xs0 2.0628 kg Bs 29.6891 MJ
kg×y Es 12.4594 MJ

kg f0 0.5 #offspring
kg×y

xb0 0.3372 kg Bb 313.0962 MJ
kg×y Eb 123.7584 MJ

kg µ 0.034 1
y

xr0 0 kg Br 2697.1179 MJ
kg×y Er 190.8196 MJ

kg T 47 y

Supplementary Table 2: Q-parameter values. Estimated parameter values and f0, which is set to an arbitrary

value. In section 4.3 we confirm the value of Bb with three independent data sets, check that the value of Bs

remains after a minor correction, and explain that there is uncertainty in the value of Br but show that this has

virtually no effect on predicted adult brain and body mass provided Br is at least within 70 and 2700 MJ/(kg y).



4.2 R-parameter values

The R-parameter values are listed in Supplementary Table 3 for the power competence case and in Supple-

mentary Table 4 for the exponential competence case. The specific values used yield a high ontogenetic fit

with H. sapiens as shown in Extended Data Fig. 3g,h.

The value used forϕr yields maternal provisioning for ≈ 20 years, which is similar to the age where negative

caloric production ends in Tsimane forager-horticulturalists 12.

4.2.1 For power competence

Skill metabolism Energy extraction Maternal provisioning Mutation effect

sk 0.5 α 1 TBγ† ϕ0 0.4 δ 0.1

Bk 36 MJ
TB×y γ 1.4 ϕr 0.2 1

y

Ek 370 MJ
TB xk0 1 TB

Supplementary Table 3: R-parameter values with power competence. The value of ϕ0 (0.4, in bold face) is

smaller than that used previously 1 (0.6) because of our improved implementation of maternal provisioningϕ;

as shown in Extended Data Fig. 2g, this change has virtually no effect on the resulting growth strategy as well as

on brain and body sizes but allows to incorporate maternal provisioning for the various challenge types. †For

the expression of e2, the unit is TB2γ with multiplicative cooperation but TBγ with other forms of cooperation.

4.2.2 For exponential competence

Skill metabolism Energy extraction Maternal provisioning Mutation effect

sk 0.5 α 1.15 ϕ0 0.6 δ 0.1

Bk 50 MJ
TB×y γ 0.6 TB−1† ϕr 0.2 1

y

Ek 250 MJ
TB xk0 0 TB

Supplementary Table 4: R-parameter values with exponential competence. The value of ϕ0 (0.6, in bold face)

is smaller than that used previously 1 (0.8) because of our improved implementation of maternal provisioning

ϕ; as shown in Extended Data Fig. 2g, this change has virtually no effect on the resulting growth strategy. †For

the expressions of e2 and e4, the unit is TB−2 with multiplicative cooperation but TB−1 with the other forms of

cooperation.



4.3 Discussion of estimates of the maintenance costs (Bi for i ∈ {b,r,s,k})

In Extended Data Fig. 3a,b we show that the predicted adult mass of tissue i tends to decrease with the mass-

specific maintenance cost of tissue i , Bi , and similarly the adult skill level decreases with the memory cost Bk.

Thus, the predicted adult values of tissue mass and skill level depend on the accuracy of the corresponding Bi .

In this section we discuss the estimates of Bi .

As discussed previously 1, we assume as a first approximation that Bi and Ei are constant with respect to

age, although in reality they may vary with age as is known to be the case for the mass-specific maintenance

cost of brain tissue 13. So, our approach is to estimate these parameter values around the ages where the pa-

rameter is expected to have the strongest effects on growth dynamics. From the shape of the ontogenetic

dynamic equations (Eqs. 1 and 2 in Methods), the growth dynamics are more likely to be driven by mainte-

nance costs Bi later in life and by acquisition costs Ei at points in life where the tissue is growing the fastest 14.

So, to obtain the values of Bi and Ei at the ages that are presumably most affected by them, González-Forero

et al. 1 estimated Bi from data for adults, Eb from data for newborns, Er from data for fifteen year old females,

and Es for newborns.

Bb: Here we corroborate the value of Bb with three independent data sets. The value of Bb (Supplemen-

tary Table 2) was previously 1 calculated using the ratio of glucose uptake by the brain per unit time in adult

human females (rate of glucose uptake by the brain divided by that of the body) as reported by Kuzawa et

al. 15 who used data from Chugani et al. 16 and González-Forero et al. 1 corrected for non-oxidative glucose

metabolism using data in Goyal et al. 17 [hence, the sexed data in Kuzawa et al. 15 yields an estimate of Bb

of 313.0962 for females and of 312.7776 MJ/(kg y) for males (sample size: 2 females and 7 males; no con-

fidence intervals provided)]. A second estimate for mixed sex data is the following. Herculano-Houzel 18

used estimates from data in Karbowski 19, who in turn used the data in Clarke and Sokoloff 20. Clarke and

Sokoloff 13 (p. 650), who used data compiled by Sokoloff 21 for mixed sexes from earlier (1940-1950’s) stud-

ies, reported an oxygen consumption of 3.5 ml/min per 100 g of brain tissue in a normal young adult human

(no sample size or confidence intervals provided). Oxygen consumption can be transformed 22 into power

units by multiplying by 20.1 kJ/l O2. Hence, with these values, the mass-specific cost of brain maintenance

is 3.5 × ml O2
min 100 g × 1 l

1000 ml × 20.1 kJ
l O2

× 1 MJ
1000 kJ × 1 l

1000 ml × 60 min
1 h × 24 h

1 d × 365 d
1 y × 1000 g

1 kg = 369.7596 MJ
kg×y , which ap-

proximates the value of Bb estimated before 1 (Supplementary Table 2). Most recently, a third data set with

mixed sexes yields a similar estimate. On page 202, McKenna et al. 23, who used data from Madsen et al. 24 for

sexes combined, reported an oxygen consumption for whole brain in humans of 1.425±0.189 µmol/(g min)

(mean ± SD; sample size: 8). In ideal gas conditions, a liter of oxygen has 22.7 moles, and hence this results in

341.7371±45.3251 MJ/(kg y), which includes the two estimates above. The discrepancies in these three esti-

mates of Bb yield a difference of up to ≈ 250 g in the predicted adult brain size in the purely ecological scenario

with exponential competence (see legend of Extended Data Figs. 3c,d). As the ontogenetic data in Kuzawa et

al. 15 allowed González-Forero et al. 1 to estimate most of the Q parameters [xb(0), xs(0), Bb, Bs, Eb, Er, Es, K ,

and β], to preserve data homogeneity in our parameter estimates, which is important to obtain a meaningful

model outcome, we continue to use the estimate of Bb based on the data of Kuzawa et al. 15 (for a similar aim

of preserving data homogeneity see van der Veer et al. 25). To be sure, the discrepancy between the estimate for



Bb that we use [313.0962 MJ/(kg y)] 15 and the most recent estimate [341.7371 MJ/(kg y)] 24 yields a difference

of up to ≈ 140 g in the predicted adult brain size in the purely ecological scenario with exponential compe-

tence (see legend of Extended Data Figs. 3c,d). This discrepancy approaches the range of variation of ≈ 130 g

in healthy adult female brain size of the original data set for adult brain size we use 15,26, suggesting the choice

of the value we use for Bb does not substantially increase our prediction error.

Br: Here we explain that there is uncertainty in the value of Br and justify the value we use. In short, there

is uncertainty in this value because we are unaware of data that allows to estimate it for preovulatory ovarian

follicles, but the value we use yields predictions that closely match observed patterns.

We identify reproductive tissue with preovulatory ovarian follicles for three reasons. First, with this re-

stricted notion, reproductive tissue is not involved in offspring maintenance and thus allows for a simpler ex-

pression of fecundity 1 (see section 1). Second, identifying reproductive tissue with the ovarian follicle rather

than the oocyte takes into account that much of the oocyte-related metabolism is carried out by other cells

in the follicle, and so to capture the maintenance and production cost of the oocyte, the metabolism of these

accompanying cells should in principle be considered 27,28. Indeed, the follicle is regarded as the functional

unit of the ovary 27. Third, we identify reproductive tissue with preovulatory follicles rather than follicles at

earlier stages of development to account for the fact that most follicles at earlier stages are lost and do not con-

tribute to fertility, while preovulatory follicles directly do so 27,28. Therefore, the parameter Br would ideally be

estimated for preovulatory ovarian follicles.

However, we have been unable to find reports on the metabolic rate of preovulatory follicles. To gain an

idea of the value of Br, we previously 1 used the metabolic rate of oocytes as a proxy, which thus lacks informa-

tion on the overall maintenance cost of reproductive tissue as we define it. Hence, González-Forero et al. 1 used

the oxygen consumption of a human oocyte (in mixed developmental stages) estimated 29 to be 0.53×10−9 l

O2/(h oocyte), and assumed that the dry mass of a human oocyte is similar to that of a mouse oocyte. This

introduced two additional sources of error in the estimate of Br: first, the volume of a human oocyte is an or-

der of magnitude larger 30 than that of a mouse oocyte 31; and second, by using dry mass, the predicted mass

of reproductive tissue is that of dry mass rather than overall mass, which is the relevant one for the model

(particularly because we take body mass to be xB = xb +xr +xs).

Correcting these two sources of error in the calculation of Br, although still using the metabolic rate of

oocytes, the estimate of the maintenance cost of reproductive tissue is the following. Since oocytes in pre-

ovulatory follicles become arrested in metaphase II, it would be more suitable for our purposes to use the

metabolic rate of metaphase-II oocytes (which may have low metabolic rate because of their arrested state 32).

The oxygen consumption for human oocytes at stages between metaphase I and II has been estimated 32 to be

0.573×10−9 l O2/(h oocyte) (corresponding estimates for exclusively metaphase-II oocytes in the same study

were suggested to be artificially low as these oocytes were preserved for one day in vitro after extraction 32). As

oxidative metabolism takes place inside rather than outside the cell membrane, it is likely more appropriate to

divide this oocyte metabolic rate by the mass of the ooplasm (i.e., the cytoplasm of the oocyte) and intracellular

structures rather than the mass of the whole oocyte (which includes external structures such as the periviteline

space and zona pelucida). The volume of the ooplasm of a metaphase-II human oocyte has been estimated 30



to be 1.43×106µm3. This volume was corroborated by later studies 33 which also find that the diameter of the

ooplasm does not change between metaphase I and II. Taking this volume as being of water density, these val-

ues yield the estimate: Br = 0.573×10−9 l O2
h×oocyte ×20.1 kJ

l O2
× 1 oocyte

1430 ng × 24 h
1 d × 365 d

1 y × 109 ng
1 g × 1000 g

1 kg × 1 MJ
1000 kJ = 70.5535

MJ/(kg year), which is two orders of magnitude smaller than the previous estimate 1 [Supplementary Table 2;

alternatively, if rather than using the volume of only the ooplasm, one uses the volume of the whole oocyte,

which is estimated 30 to be 3.52×106µm3, the estimate for Br becomes 28.6624 MJ/(kg year)]. Recall that this

estimate of Br is for oocytes rather than the more desirable estimate for preovulatory follicles.

In Extended Data Figs. 3a–f we show that when Br falls within 70 and 2700 MJ/(kg y), Br affects primarily

the predictions of adult mass of reproductive tissue but has virtually no effect on adult brain and body mass.

If Br < 70 MJ/(kg y), the effects on adult brain and body mass become pronounced (Extended Data Figs. 3e,f).

The reason that brain and body mass are largely unaffected when Br falls within 70 and 2700 MJ/(kg y) is that

Br affects the allocation to reproductive growth during adolescence, which occurs in the life history after all of

brain growth has occurred, and after most of body growth has taken place (Extended Data Fig. 3i). Values of

Br approaching the low limit of the interval 70 and 2700 MJ/(kg y) shrink the length of adolescence, yielding

a poorer prediction of the human life history than larger values (Extended Data Fig. 3i). Additionally, values

of Br toward the lower end of 70 and 2700 MJ/(kg y) yield a very large adult mass of reproductive tissue, while

the observed adult mass of preovulatory follicles is very small (≈ 10 g; see section Bs below). Finally, if Br < 70

MJ/(kg y), we find that the life history is severely disrupted, yielding for example brain growth throughout life

and no non-reproductive childhood which is inconsistent with human life history (Extended Data Fig. 3i).

Hence, given the uncertainty in the value of Br as data to estimate it for preovulatory follicles remains

unavailable to our knowledge, the better life history predictions with larger Br, and the better predictions of

adult reprodutive mass with larger Br, the model predicts that estimates of Br for preovulatory follicles would

fall toward the high end of 70 and 2700 MJ/(kg y). Therefore, given the little effect on adult brain and body

mass as Br changes within 70 and 2700 MJ/(kg y), we use the large value of Br used previously 1, particularly as

there appears to be little reason for it to be of concern for the purposes of this paper as we are concerned with

brain and body mass rather than reproductive mass.

Bs: Here we confirm the value of Bs after a minor correction. Since the previous 1 estimate of Bs considered

the dry mass of reproductive tissue, a minor correction for the calculation of Bs is also in order although its

value is virtually unchanged. Adult human females have on average about 2 preovulatory follicles at any given

age 34. A preovulatory follicle has an average diameter of 21.1 mm 35. Denote by Xi (τa) the observed mass of

tissue i (or of body mass if i = B) at the observed age at adulthood τa [so 15, XB(τa) = 51.1 kg and Xb(τa) = 1.31

kg]. Approximating the follicle mass by the mass of a spherical cell of water with such diameter, then the adult

mass of reproductive tissue is Xr(τa) = 2 follicles× 4
3π

( 21.1 mm
2

)3× 1 kg
106 mm3H2O

= 9.8373×10−3 kg rather than the

previously 1 estimated value of 3.9349×10−3 kg. Hence, Xs(τa) = XB(τa)−Xb(τa)−Xr(τa) = 49.7802 kg which is

virtually the same to the previously 1 estimated 49.7861 kg.

Since at human adulthood there is no growth, it must be the case that the adult observed metabolic rate

is Brest(τa) = Bmaint(τa) = ∑
i∈{b,r,s} Xi (τa)Bi . Because we have 15 that Brest(τa) = 1898.8707 MJ/y, it follows that

Bs = [Brest(τa)−BbXb(τa)−BrXr(τa)]/Xs(τa) = 29.8918 MJ/(kg y) which is also virtually the same to the previ-



ously 1 estimated 29.6891 MJ/(kg y).

Bk: Here we describe estimates of the metabolic memory cost Bk and a rough calculation of information

storage capacity in the human neocortex.

We use values for Bk that fall within an estimated range for stored motor patterns in cerebellum Purkinje

cells of rats. Specifically, Purkinje cells in the rat cerebellum are estimated to have a resting energy consump-

tion of between 1 and 400 mW/GB of stored motor patterns 36. Changing units, this range equals 32 to 12614

MJ/(TB y), which includes the values we use for Bk. The value used for the metabolic learning cost Ek is of a

similar order of magnitude but empirical estimates of the learning cost remain unavailable to our knowledge.

As the value for the metabolic cost of memory Bk is in information units, the model makes predictions

for skill level in such units. In particular, the resulting predicted skill level for the best fitting scenario for

H. sapiens in Fig. 4b in the main text is x∗
k (τa) = 3.92 TB (Extended Data Fig. 10e). For comparison, we contrast

this value with available, preliminary estimates of the human brain’s information storage capacity. Neuropil in

the rat hippocampus is estimated to sustain 4.7 bits of information per synapse 37 and the human neocortex

is estimated to have 0.15 quadrillion synapses 38, which would very roughly suggest 587.5 TB of storage in the

human neocortex.



5 Numerical implementation

We obtained approximate numerical solutions using the software GPOPS 2.3 39 in MATLAB R2015b in a 32-

CPU Linux machine running Debian 8.9 (Jessie). GPOPS is based on a pseudospectral method which converts

the optimal control problem into a finite-dimensional nonlinear program. GPOPS adapts the underlying time

mesh (partitions of the optimization horizon, or time interval) until the error tolerance is met or until the

maximum number of iterations is reached. We discarded solutions that did not meet the error tolerance or

where the solver failed [e.g., stalled in a zero objective (i.e., a minimum)].

The GPOPS setup implemented previously 1 produced unstable costate estimation in the newer GPOPS

release used here. Hence, we used the following GPOPS setup:

mesh.method = ’hp-LiuRao’;

mesh.tolerance = 1e-6;

mesh.maxiterations = 45;

setup.method = ’RPM-Differentiation’;

To facilitate convergence of dynamic optimization algorithms, non-negative state variables should be scaled

so that they fall roughly between 0 and 1. We rescaled somatic mass to Mg (megagrams; 106 grams), brain mass

to hundreds of kg (105 grams), and reproductive mass to tens of kg (104 grams). We rescaled skill units to tens

of TB (101 terabytes) for the cases with power competence, and did not rescale skill units (100 terabytes) for

the cases with exponential competence. These scalings were found by trial and error and were chosen because

they prevent solver failure and minimize running time.

For each of the six cases considered (PC-AC, PC-MC, PC-SC, EC-AC, EC-MC, and EC-SC), we performed

a parameter sweep taking P j ∈ {0,0.1,0.2,0.3, . . . ,0.9,1} for all j ∈C. Since
∑

j∈CP j = 1, there are only three

free parameters which we took as being P1, P2, P3, and so P4 = 1−P1 −P2 −P3. To allow the solver to find an

optimal solution, it is important to feed it with an initial guess that is sufficiently close to the solution. Hence,

we implemented the parameter sweep so that the solution for one parameter combination was used as both

the initial guess and the resident for “next” parameter combinations as explained as follows.

Specifically, each of the six cases involved: an initialization and the parameter sweep, as follows.

Initialization

1. Solve the purely ecological optimal control problem of previous work 1 with the new GPOPS settings,

new scalings, and the initial guess given by:

xb(0) = xb0 xb(T ) = 1.3 kg (19a)

xr(0) = xr0 xr(T ) = 0.2 kg (19b)

xs(0) = xs0 xs(T ) = 50 kg (19c)

xk(0) = xk0 xk(T ) = 40 TB (19d)

ub(0) = 0.2 ub(T ) = 0 (19e)

us(0) = 0.8 us(T ) = 0. (19f)



(So, here there is no damping or iterations of optimal control problems to reach a best response to itself).

2. Solve again using the solution of step 1 as the initial guess. This was done as an attempt to obtain a

solution with a coarser mesh partition to minimize running time in subsequent runs. (Again, without

damping or iterations for a best response to itself).

Parameter sweep

3. Solve the optimal control problem (18), now with damping and iterations for a best response to itself,

for the purely ecological setting with the solution of step 2 as initial guess and resident. The parameter

combination here is thus P0 = (P1,0,P2,0,P3,0,P4,0) = (1,0,0,0).

4. Iterate parameter combinations as follows. For a given Pl = (P1,l ,P2,l ,P3,l ,P4,l ), define

Pl+1 = (P1,l+1,P2,l+1,P3,l+1,P4,l+1) such that P1,l+1 = P1,l −0.1 and P j ,l+1 = P j ,l +0.1 for only one of the

other j ∈C (that is, to obtain Pl+1, reduce P1 in Pl by 0.1 and increase one of the other P j by 0.1). Solve

(18) for all such Pl+1 using the solution for Pl as initial guess and resident. Stop when P1,l = 0.

Since the solution of a run is needed to initialize subsequent ones, runs over combinations of P j cannot be

run all in parallel and so we implemented them partly in series and partly in parallel (i.e., in a tree manner).

Solutions were discarded if a best response to itself was not achieved, which happened because of cycling

solutions, solver failure, or solver warnings indicating problem infeasibility (i.e., that the problem cannot be

solved without violating constraints; Extended Data Fig. 5b,c,e). Warnings of problem infeasibility need not

mean that the problem is indeed infeasible, but the solver slows down dramatically. Determining if a problem

for a given parameter combination is indeed infeasible is of major difficulty so this was not attempted. To

streamline the parameter sweeps, the run of a given parameter combination Pl was preceded by a test with

the GPOPS setting mesh.maxiterations = 0 so GPOPS only attempts one mesh partition rather than up to

46. The run was discarded if infeasibility warnings arose in the test; otherwise the run proceeded.

When the solution for a parameter combination Pl is discarded, the solution for Pl+1 cannot be initialized

as indicated in step 4 and so the parameter space along that trajectory was not explored. Consequently, the

parameter sweep over P j is exhaustive within these practical limits.

Because of Eqs. (12d) and (14d), some parameter combinations are equivalent: for instance, with PC-MC,

the parameter combination (P1,P2,P3,P4) = (0.9,0,0.1,0) is equivalent to (0.9,0,0,0.1). Similarly, some param-

eter combinations that do not involve cooperation are equivalent between cases: for instance, the parameter

combination (0.9,0,0.1,0) with PC-MC is equivalent to (0.9,0,0.1,0) with PC-AC. Hence, for a set of equivalent

parameter combinations, we ran only one combination and took its results as being the same for the equiva-

lent combinations.

For a given parameter combination, a typical run converging to a best response to itself took from 2 to

4 days to complete (compared to 1 to 20 minutes in the undamped, uniterated non-social case 1). The total

running time for the parameter sweep over the P j over the six cases was approximately 2.5 months.



6 Measures of fit

Here we define the quantities we used to measure fit. Fit could be measured in multiple ways (Extended Data

Fig. 2h). We measure fit as an “age-wise distance” of the prediction from the observation. By observation

we do not mean raw observations but averaged data: specifically, average brain and body mass at a given

age. Averaged data are themselves predictions from statistical models that fit the raw data, so the problem of

measuring goodness of fit here is different from the inferential statistics problem of inferring averaged data

from raw data: we seek to measure the distance of predictions from averaged data rather than the ability of

the predictions to describe the raw data. Given this different nature of the problem, rather than using some

of the common measures of fit of predictions and raw data (e.g., likelihood and associated quantities), we use

the following measures of fit.

Let Xb(τ) and XB(τ) be the observed brain and body mass at the observed age τ, respectively. We seek to

measure how far the prediction is from these quantities. We define the normalized residuals at age τ as

rb(τ) = x∗
b (τ)−Xb(τ)

Xb(τ)
(20a)

rB(τ) = x∗
B(τ)−XB(τ)

XB(τ)
. (20b)

We normalize these residuals to prevent body size from obscuring deviations in brain size since body size is

typically much larger than brain size. Similarly, we normalize with the values observed at age τ rather than at

another age (say, the observed age at adulthood τa) to prevent deviations at earlier ages from being obscured

by deviations at later ages where values are typically larger.

We measure the deviation of predicted brain and body mass at age τ as the magnitude of the residuals

vector (rb(τ),rB(τ)) given by its Euclidean distance to the origin:

D(τ) =
√

r 2
b(τ)+ r 2

B(τ). (21)

Thus, a deviation of D(τ) = 0 occurs if and only if there is a perfect fit between prediction and observation in

both brain and body mass at age τ. An increasing deviation D(τ) thus means a poorer fit.

Adult fit: We denote the observed age at adulthood as τa, which we take to be τa = 25 y. As previously stated,

there are multiple ways to measure adult fit (Extended Data Fig. 2h). We measure the adult deviation with

D(τa), which corresponds to arrow (2) in Extended Data Fig. 2h. Thus, we measure adult fit as −D(τa). This

measure of adult fit is zero if and only if there is a perfect fit between predicted and observed adult brain and

body mass at τa (= 25) y of age. Decreasing (i.e., towards negative infinity) adult fit means poorer fit.

Ontogenetic fit: The average deviation throughout ontogeny is E[D(τ)] = 1
n

∑n
τ D(τ), where E denotes expec-

tation over τ and n is the discrete number of ages sampled. We measure ontogenetic fit as −E[D(τ)]. This

measure of ontogenetic fit is zero if and only if there is a perfect fit between predicted and observed brain and

body mass throughout ontogeny. Decreasing ontogenetic fit (up to negative infinity) means poorer fit.

Our exploration of the challenge parameters P allows to identify which combination P∗ yields a best fit

with data. However, it is also useful to gain an idea of how sharply fit decreases as the challenge parameters P



depart from the best fitting combination P∗. With this aim, in Extended Data Fig. 9 we obtain high fit intervals

around the scenarios yielding best adult fits for the various Homo species where the best adult fit is higher than

−D(τa) =−0.05. This threshold −D(τa) =−0.05 is arbitrary, but facilitates seeing how flat adult fit is around its

maximum value. We obtain high fit intervals by plotting adult fit vs P j around the corresponding best fitting

scenario, interpolating adult fit to obtain a continuous line, and obtaining the interval where this interpolated

curve is greater than −0.05. This shows that the adult fit at the best fitting scenarios is generally a steep peak

for the proportion of competitive challenges (P3 and P4), but is flatter for the proportions of ecological and

cooperative challenges (P1 and P2). Consequently, the proportions of ecological and cooperative challenges

in the P∗ across Homo can typically be varied to some extent without drastically decreasing adult fit (i.e., the

high fit intervals for P1 and P2 are generally wider than those for P3 and P4), but the proportions of competitive

challenges cannot be varied much without strongly diminishing adult fit.

7 Observed values of brain and body sizes in hominins

Here we list the observed (or empirically estimated) values used for adult brain and body mass in hominins.

Since the model considers females only, we use only female values when available. We used observed adult val-

ues of brain and body sizes for H. sapiens [body (51.1 kg) and brain (1.31 kg) for females 15], H. neanderthalen-

sis [body (66.4 kg) for females, brain (1.442 kg) averaged over sexes 40,41], H. heidelbergensis [body (54.24 kg)

and brain (1.16 kg) averaged over sexes 42], H. erectus [body (55 kg) for females, brain (0.98 kg) averaged over

sexes 43], H. ergaster [body (56 kg) for females, brain (0.849 kg) averaged over sexes 44], H. habilis [body (32 kg)

for females, brain (0.601 kg) averaged over sexes 44], H. floresiensis [body (25 kg) and brain (0.4 kg) averaged over

sexes 45,46], H. naledi [body (37.4 kg) and brain (0.5 kg) averaged over sexes 47], and Australopithecus afarensis

[body (29 kg) and brain (0.434 kg) averaged over sexes 44]. For H. floresiensis, H. naledi, and A. afarensis, we find

adult fits that are more than ten times poorer than those reported in Fig. 4a of the main text (Extended Data

Fig. 8), suggesting that different Q and R parameters are needed for a similarly good account of these species.

8 Adjustment of the energy extraction efficiency from maternal provi-

sioning at birth,ϕ0

Here we describe how we identified the value of maternal provisioning at birth (ϕ0) that locally maximized

ontogenetic fit in Fig. 4b of the main text after having maximized adult fit. In our exhaustive search across the

P-parameters, we identified the P∗-parameter combination that maximized adult fit −D(τa) for H. sapiens.

Previous work 1 showed that varying ϕ0 affects body and brain mass early in ontogeny but has little effect on

their adult values. We then took the ten P-parameter combinations that yield the best adult fit with H. sapiens

across the six cases considered. All such 10 combinations occurred in the case of exponential competence

with submultiplicative cooperation (in which case, ϕ0 = 0.6). For each of these 10 combinations, we obtained

uninvadable growth strategies with ϕ0 ∈ {0.4,0.45,0.5} to find a ϕ∗
0 and a combination of P that yielded a solu-

tion maximizing ontogenetic fit −E[D(τ)]. The resulting best ontogenetic fit occurred for the same parameter

combination P∗ but with the value ϕ∗
0 = 0.5 (Fig. 4b in the main text).



9 Possible extensions of the model

We intend our model to serve as a foundation upon which future work may be built to gain a causal under-

standing of brain-size evolution and related evolutionary phenomena. This approach will benefit from further

exploration of the large parameter space and from progress on parameter estimates. Moreover, here we men-

tion some lines of study that may be approached, although many will require major extensions of the model or

substantial progress in overcoming the computational challenges posed by the evolutionary study of function-

valued traits. These possible extensions are the following. (1) Partitioning body to distinguish other expensive

tissues such as digestive 3 and adipose 4. This would allow to assess the expensive tissue hypothesis 3 proposing

a trade-off between brain size and the size of other expensive tissues by studying how the size of those tissues

changes with changes in brain size. (2) Letting challenge proportions and environmental difficulty vary with

age or evolutionary time 48 or with the population skill level. The dependence of environmental difficulty on

evolutionary time would allow assessing hypotheses of environmental variability as drivers of human brain

expansion 49. (3) Allowing mortality rate to depend on skill level 50 or on tissues involved in bodily mainte-

nance such as immune system components 51. The latter would contribute to a quantitative understanding of

the evolution of senescence 52,53. (4) Studying the evolution of allocation to tissue maintenance rather than to

tissue growth. This would allow for evolutionary study of tissue-specific (e.g., brain) senescence 54. (5) Con-

sidering multiple types of skills with different functions. This would allow addressing hypotheses concerning

the evolution of domain-general or domain-specific cognition 55. (6) Partitioning brain tissue into regions with

specific functions. This would permit to study how the size of some brain components is affected by the size of

other components or of total brain size and viceversa, thus addressing the mosaic theory of brain evolution 56.

(7) Considering the evolutionary dynamics rather than only evolutionary equilibria, which would allow assess-

ing evolutionary branching in brain size 57. (8) Explicitly incorporating social learning and culture, as well as

studying their effects on EEE, which would allow assessing if these factors interact with ecological challenges

to drive human brain expansion, and would allow for further evaluation of links between social complexity

and brain size 58–63.
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